TENSILE STRENGTH OF SURFACE NANOFIBERS IN TUNGSTEN
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Recent studies carried out in linear plasma devices and tokamaks, have shown that low-energy He bombardment
causes the creation of the nanofiber structure that leads to increased radiation erosion and material failure. One of
the key characteristics of nanofibers is their mechanical strength. In this paper, a new mathematical technique was
used for determination of the inherent tensile strength of nanofibers. The configuration of nanofibers was modeled
by equipotential cylindrical surfaces. The potential distribution and mechanical stresses induced by high electric
field were determined. An elaborated formalism was used to obtain the ultimate strength of tungsten nanofibers. The
mean value of the tensile strength of tungsten nanofibers is equal to 27.52 GPa. This value is a substantial part of the

theoretical tensile strength of tungsten.
PACS: 61.72.Mm, 62.40.+i, 61.66.-f

INTRODUCTION

Tungsten is the primary candidate for the divertors
and blankets of next generation the fusion devices.
Tungsten was chosen because of its high thermal
conductivity and melting point, low sputtering erosion,
and small tritium retention [1]. Earlier studies carried
out in linear plasma apparatuses and tokamaks, have
shown that low-energy He bombardment (in the region
of 40...300 eV) causes the creation of nanoscale surface
morphology known as ‘fuzz’ and formation of the
nanofiber (nanotendril) structure [2] that leads to
increased radiation erosion and material failure. The
exact formation mechanism and mechanical properties
of nanofiber structures remain indistinct.

The ultimate strength of metals realized in
nanofibers is of great importance in the field of strong
materials. Current advances in computing capabilities
have made it achievable to use sophisticated atomic
bonding potentials based on realistic theoretical
considerations [3-5]. The ideal strength of a metal is a
mechanical stress at which a perfect crystal becomes
mechanically unstable and sets an upper limit of the
material strength. The ultimate strength of materials is
generally restricted by the nucleation and motion of
dislocations and other lattice defects. For this reason,
the strength, corresponding to the failure of a perfect,
dislocation free metal, has hardly ever been achieved.
The theoretical strength was nearly obtained in uniaxial
tension experimental tests of whiskers [6], monoatomic
chains [7] and nanoneedles [8]. The comparison of the
ideal strength with the experimental measurements of
strength of needle-shaped nanocrystals determined
using the high-field field-ion microscopy (FIM) method
[9] has shown that the ultimate strength is determined
by heterogeneous nucleation of dislocations at the
lateral surface of specimens. Modern nanoindentation
researches showed that the yielding at the nanometer
scale is controlled by homogeneous nucleation of
dislocations under the indenter where the normal
stresses approach the level near the theoretical strength
of ideal crystals [10]. Nanosized objects have
exceptionally high breaking stress, similar to that of
ideal crystals and have prospective applications in anti-
reflection coatings, scanning probe microscopy, and

field ion and electron emission [11-13]. Theoretical
analysis of the ultimate tensile strength of nanosized
crystals comprises the computer simulation of
phenomenological  processes, such as plastic
deformation at nanoscale level. However, the
information on mechanical properties of such crystals at
an atomic level is very limited. Experiments testing the
ultimate strength of nanoobjects are very complicated,
due to the difficulties in determination of the
mechanical response of nanocrystals. Because of these
difficulties, very little is known about mechanical
properties of nanocrystals.

The normal stress acting near the surface of tip
samples can be calculated if it is known the electric field
at each point of the surface. Knowing the distribution of
the normal to the surface component values of the stress
tensor, it is possible to give an adequate description of
the stress state of the whole sample. Although numerous
attempts were made to solve this problem, at the present
time it can be considered that it is completely solved
only the task of determining of the stress field in the
hemispherical part of the sample and calculations in
general of the normal component of stress along the axis
of the sample [14-17], that play an important role at the
analytical definition of methods of field ion microscopy
of needle nanocrystals strength on a breakaway.

The FIM has made it achievable to straightforwardly
observe the atomic structure of nanocrystals under well-
controlled crystallogeometric state combined with in
situ mechanical loading in ultra-high electric fields. In
these experiments, the nanocrystals subjected to high
electric fields were fractured under tensile stresses close
to the theoretical strength. An exceptional benefit of this
method is the opportunity to avoid the intrinsic
difficulty in nano-scale mechanical testings caused by
the necessitate for assigning the cross-section area on
which the tensile force is applied. The ultimate strength
of nanocrystals at high-field testing could be determined
by using only the field strength.

In this paper an analytical method for determination
of the field strength on the top of the nanofibers was
elaborated which is needed for accurate determination
of the ultimate mechanical stresses for nanosized
crystals in high electric fields. As a result, the upper
limit of the tungsten strength has been determined.
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1. ELECTROSTATIC APPROXIMATION
OF NANOTIPS

To determine the tensile component of the normal
stress o,, we define the configuration of the tip in
cylindrical coordinates as r = R(z). The tip is assumed
axisymmetric and atomic-smooth. Find o, in normal to
axis of the sample cross-section by the plane z = z,. The
ponderomotive forces of the electric field lead to the
appearance of tensile forces in the plane equal to
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where ds is the element of surface area, the normal to
which makes an angle a with the z-axis. The integral is
taken over the surface area of the sample from the
vertex up to the plane z =z, Imagine ds as 2zrdl and,
respectively:
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where ro = R(zp) is the radius-vector of the surface in
the cross section by the plane z = z,.

To determine the potential field in the vicinity of the
tip sample surface it is proposed a number of models:
parabolic, hyperbolic and “sphere-on-cone” [17, 18].
These approximations are not in all cases provide
accurate descriptions of the real field emitters. The most
flexible models, using only elementary functions [18],
based on using of approximations of the surface
configuration of the specimens by the equipotentials
generated by charges distributions. Configuration of
pulling electrodes, typically described by the same
families of the equipotentials as a tip sample. At the
same time, there are some peculiarities of the pulling

electrodes geometry, that cannot be described within the
framework of existing models. And presence of a
circular aperture in pulling electrode is, mainly, of such
features. However, the nature of the potential
distribution at the sample surface, that determines the
mechanical load on the sample, as estimates show, does
not practically depend on the shape of pulling electrode
(cathode). Taking into account these observations, the
most convenient for solving problems related to the
calculation of mechanical stresses, is a model,
developed in [19].

In general case, the potential of the electric field,
generated by uniformly charged semi-infinite wire,
located along the negative axis z, with accuracy up to an
arbitrary constant equal to:
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where & is an electric constant, equal 8.8542-10™2 F/m,
¢ is current coordinate along the charged wire, z(&) is a
linear charge density, satisfying the condition of
finiteness of the field strength and specified by the
equation:

©)
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where 7 and q — constants that specify the magnitude of
the charge on the wire top and a constant linear charge
density, respectively. In dimensionless coordinates

y=p/ro and n=z/ro, )
introducing parameter
w=q/try, (6)

as a result of expression (3) integration, we obtain
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Here Cx and C, — constants indicate the position of
equipotentials, corresponding to the configuration of tip
sample and pulling electrode, V is potential difference
between sample and cathode. Equipotential that defines
the shape of the tip surface is expressed by the ratio:
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and configuration constants equal:

Co=w-In2and c, =2 —In2yy.. (9
The function # = f{y) describing the shape of the tip,
in equation (8) taking into account (9) is set implicitly.
There was written a special computer program for its

determination. This program allows with defined
precision to calculate and to display the shape of the tip
surface with the given configuration parameter w, and to
calculate reduced field strength at any point on the
surface.

Fig. 1 shows the equipotential lines corresponding to
the configuration of the nanoobjects at different ratios of
parameters of the electrostatic model.

Fig. 2 shows the dependence of the circles radii
corresponding to the maximum and minimum of emitter
cross-sections, from the configuration parameter of
approximation w.

2. FIELD STRENGTH CALCULATION

The local field strength can be obtained by
differentiation of the expression (7):
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Fig. 1. Approximation of configuration of the
nanoobjects by equipotentials that are generated by
uniformly charged semi-infinite wire with additional
point charge at its beginning:
1-w=2;2—-w=3;3—w=54—-w=7
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Fig. 2. The dependence of reduced circles radii
corresponding to the maximum and minimum of
nanoobjects cross-sections, from the approximation
parameter o
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Fig. 3. The dependence of reduced field strength from

the dimensionless radial coordinate for nanoobjects of

different configurations, calculated from equation (10):
l1-w=2;2-0=3;3—-w=54-0w=7

The field strength at the top of the emitter can be
represented as:
V(o+1)
F = -
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(11)

For a parabolic tip, as is known, the relation is valid
[17, 20]
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Comparing equations (11) and (12) when the
approximation  parameter @ =2, corresponding
parabolic configuration of the tip, we can see that the
results of the field strength calculations for these
equations are similar. That indicates applicability of the
approximation.

Fig. 3 shows graphs of dependence of reduced local
field strength from dimensionless coordinate y. The
complex nature of the dependence when w >3 is
explained by the ambiguity of the function E¢y) for
samples with a thickening at the top.

3. MECHANICAL STRESSES
CALCULATION

It is known that mechanical stresses play a decisive
role in the destruction of samples in process of their
forming by field evaporation. Mechanical tensile
stresses along the axis of the emitters defined by the
relation (2) for complex configurations can be
represented in form of two integrals
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Here the first integral describes the stretching of the
emitter by the electric field, and the second one — his
pressure on the surface area with negative normal.

The maximum value mechanical tensile stresses
along the axis of the emitter for different configurations
specified by approximation parameter o (Fig. 4), was
calculated by integration of the expression (1) taking
into account changes in the local field strength (10).
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Fig. 4. Reduced maximum values of tensile stress for
different configurations of emitters specified by
approximation parameter w

The calculations were performed according to the
formula
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Fig.5 presents reduced maximum values of
mechanical tensile stresses in the emitter for different
radii of the head and neck at the top of the sample. The



results obtained are satisfactorily approximated by a
parabolic equation

<0>/GO = a(ymax /ymin)ﬂ’ (15)
where «=0.71, p=1.69. This expression agrees
satisfactorily with the semi-empirical correlation for
determination of the density of ponderomotive forces on
the emitter surface with a thickening at apex, obtained
earlier in [20-23]. This difference may be due to the
fact that in [20, 22] was used qualitatively different
scheme of the potential distribution approximation.
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a=0.71223 +0.0044
b=1.69159 +0.00422
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Fig. 5. The dependence of reduced maximum values of

mechanical tensile stresses in the emitter from the
relationship of the radii of the head and neck

The obtained equation (15) can be used to give a
more precise value for ultimate strength of nanocrystals
which corresponds to a nearly theoretical level of
strength. As was shown in [22], the failure of FIM
specimens triggered by the electrical forces has a
statistical character. It was pointed out that the detached
specimen fragments might possess a configuration far
from spherical with low accuracy for determination of
configuration. To avoid this technical problem, a special
configuration of FIM specimens was used in
experiments on a high-field failure [22]. The radius of
the thickened spherical cap R and the neck parts r of the
specimens were determined from transmission electron
micrographs. The samples were loaded by the
mechanical stress produced by electric fields. The
uniaxis tensile strength was taken to be the maximum
stress withstood by a specimen before fracture.
Specimen failure was determined by the appearance of
characteristic field-ion microfractograms and was
usually observed to be correlated with a light flash in
the interelectrode space of the FIM. The voltage V
applied to the gap was increased gradually until a
breakdown phenomenon occurred. As can be shown
from Egs. (2) and (15), for samples with the ratio R/r
the breaking stress is given by
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where E is the field strength at the apex of specimen, ¢
is a numerical coefficient equal to 0.71 for samples with
thermally smoothed surface, and = 1.69 as in Eq. (15).
The deviation of g from two is due to the presence of

(16)

compressive components of the stress near the necks of
samples. For determination of tensile strength, we used
experimental data obtained on the field ion specimens of
particular configurations. Such specimens with neck
constriction were obtained [21] by heating nanofibers
(nanotendrils) at 1400...1600 °C for 10...15 min. The
radius of the spherical cap R and the neck regions r
(Fig. 6) were determined from electron micrographs.
The samples were loaded by the mechanical stress
produced by electric fields. Specimen breakage was
determined by field-ion microfractograms.

25}

0 L L L L L
40 60 80 100 120

R (nm)

Fig. 6. Dependence of breakdown voltages on the
radius of the tip

The field value at the apex of the tip is given by [13]
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where ki is the geometric field coefficient, which

slightly depends on the taper angle of the specimen. An

average voltage of the tip failure is equal to
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where o3 is the mean value of the tensile strength of the
specimens. Using the experimental data on r, R, and V;
from [21] shown in Fig. 6 it was obtained the mean
value of the tensile strength of tungsten nanofibers equal
to 27.52 GPa. This value is about 30% below the
theoretical tensile strength of tungsten [24]. This
comparison allowed to arrive at the suggestion that

observed lowering of the strength can be caused by
nucleation of dislocations at the free specimen surface.

CONCLUSIONS

1. A new mathematical technique was used for
determination of the inherent tensile strength of

(18)

nanofibers usually produced in linear plasma
apparatuses and tokamaks under low-energy He
bombardment.

2. Analytical expression for determination of the
field strength on the top of the nanocrystals of different
configurations was found out. It was established that
under small values of the configuration parameter,
equipotentials get form, close to parabolic. Under these
conditions, the obtained expression is transformed into a



well-known relation for parabolic tips used in
electronics emission and corpuscular optics. This
demonstrates the applicability of used approximation to
describe the potential distribution near the surface of the
nanotips.

3. It was calculated potential distribution, field
strength and induced by electric field stress at the
surface of nanofibers of complex configuration that
cannot be described mathematically by quadric surfaces.
Thereby it was created an analytical basis for
calculation of electron and ion optics for field emission
microscopy of nanoobjects.

4. An elaborated formalism was used to obtain the
ultimate strength of tungsten nanofibers. The mean
value of the tensile strength of tungsten nanofibers is
equal to 27.52 GPa. This value is a substantial part of
the theoretical tensile strength of tungsten.
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INPOYHOCTDb HA PACTAKEHHUE ITIOBEPXHOCTHbBIX
BOJIb®PAMOBBIX HAHO®UBPUJII

A.A. Maszunos, A.B. Hockos

HenaBHue nccienoBanus, MPOBEJCHHBIE HAa JIMHEWHBIX IIa3MEHHBIX YCTPOMCTBaX M TOKaMakKax, IMOKa3ajiH, YTo
HHU3KOPHEpreTuueckass OoMOapaupoBka aroMamMu He BBI3bIBaeT co3JaHUE CTPYKTYpHl W3 HaHO(GUOPHILI, YTO
NIPUBOJMT K YCHWJICHHIO paJalMOHHON 3po3uM M pa3pylieHuio Matepuana. OIHOIN M3 KIIIOYEBBIX XapaKTEPHCTHK
HaHO(GUOPMIUT SABISETCS MX MEXaHM4YeCKash MPOYHOCThb. B 3TOW craThe OBLI MCIOJIB30BaH HOBBIH MaTeMaTHYECKUI
METOJ IUIsi OTpe/eICHNsI COOCTBEHHOM NpoYHOCTH HaHO(GMOpmIT Ha pacTshkeHue. Kondurypamms ranoguOpmmn
MOZENUPOBANACh OSKBHIIOTCHIMAIBHBIMA IMINHAPHYSCKUMH MOBepXHOCTAMHU. OIpeneseHbl  paclpeiesicHue
NOTEHIMaa ¥ MEXaHW4YeCKHe HaIpsDHKCHHs, BBI3BAHHBIC CHJIBHBIM OJJCKTPUYECKUM IiosieM. Pa3pa®oTaHHBINH
(opmamm3M OBLIT WCTOIB30BaH LIS MOJTYYCHHUS MPEISIbHOW MPOYHOCTH BOJIb(paMoBeIX HaHO(GUOpmmi. CpemHee
3HAaYCHWE TPOYHOCTH HA pa3phelB BOMb(GPaMOBBIX HaHOGUOpwT paBHO 27,52 I'Tla. Dra BenmnumHa SBISETCS
CYIIECTBEHHOH YacThIO TEOPETHYECKON MPOYHOCTH Ha PACTHKEHHE BOJb(pama.

MIIHICTDb HA PO3TAT'YBAHHS IIOBEPXHEBHUX BOJTb®PAMOBUX HAHO®PIBPLI
0.0. Mas3sinos, A.B. Hockoe

HemaBHi gnocmigpkeHHS, TPOBEICHI HA JIHIHHMX IUIA3MOBHX MPUCTPOSX 1 TOKaMakaxX, ITOKa3alH, IIo
HHU3bKOEHepreTu4He OoMOapyBaHHs aToMaMu He BUKIIMKAE CTBOPEHHS CTPYKTYPH 3 HAHOMIOPiN, 110 NIPU3BOIUTH
JI0 TIOCHJICHHSI pajialliifHoi eposii 1 pyiiHyBaHHA Martepiany. OmHI€0 3 KIIFOYOBUX XapaKTePUCTHK HaHO(IOPiN € ix
MeXaHIYHa MIOHICTh. Y il cTaTTi OyB BUKOPHCTAaHWH HOBHM MaTeMaTHYHHA METOJ LI BH3HAYCHHS BIIACHOL
MirHocTi HaHO(DIOpin Ha po3TsarHeHHA. KoHpirypamis HaHO(DIOpim MozmenroBamacs eKBIMOTCHIIATEHUMHI
WUTHIPUYHUME [OBEPXHAMHU. BU3HAUCHO PO3MOMIN MOTEHIANy Ta MEXaHI4HI HAlpyrd, BHUKIMKAHI CHJIbHUM
SNIEKTPUYHUM ToJIeM. Po3pobnenuit ¢opmanizM OyB BUKOPHUCTAHMH JUIi OTPHUMaHHS TPAHUYHOI MII[HOCTI
Bosib()pamoBux HaHOGIOpin. CepemHe 3HAYCHHS MIIIHOCTI Ha PO3PHB BOJb(PPAMOBHX HAHOGIOPLT MOPIBHIOE
27,52 I'Tla. 1ls Benu4HMHA € CYTTEBOIO YACTHHOIO TCOPETUUHOT MIITHOCTI Ha PO3TATHEHHS BOJIb(pamy.



